129 research outputs found

    Apolipoprotein Proteomics for Residual Lipid-Related Risk in Coronary Heart Disease

    Get PDF
    BACKGROUND: Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS: The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS: Triglyceride-carrying ApoC1, ApoC3, and ApoE (apolipoproteins) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS: Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction

    Genetic loci on chromosome 5 are associated with circulating levels of interleukin-5 and eosinophil count in a European population with high risk for cardiovascular disease

    Get PDF
    IL-5 is a Th2 cytokine which activates eosinophils and is suggested to have an atheroprotective role. Genetic variants in the IL5 locus have been associated with increased risk of CAD and ischemic stroke. In this study we aimed to identify genetic variants associated with IL-5 concentrations and apply a Mendelian randomisation approach to assess IL-5 levels for causal effect on intima-media thickness in a European population at high risk of coronary artery disease. We analysed SNPs within robustly associated candidate loci for immune, inflammatory, metabolic and cardiovascular traits. We identified 2 genetic loci for IL-5 levels (chromosome 5, rs56183820, BETA = 0.11, P = 6.73E−5 and chromosome 14, rs4902762, BETA = 0.12, P = 5.76E−6) and one for eosinophil count (rs72797327, BETA = −0.10, P = 1.41E−6). Both chromosome 5 loci were in the vicinity of the IL5 gene, however the association with IL-5 levels failed to replicate in a meta-analysis of 2 independent cohorts (rs56183820, BETA = 0.04, P = 0.2763, I2 = 24, I2 − P = 0.2516). No significant associations were observed between SNPs associated with IL-5 levels or eosinophil count and IMT measures. Expression quantitative trait analyses indicate effects of the IL-5 and eosinophil-associated SNPs on RAD50 mRNA expression levels (rs12652920 (r2 = 0.93 with rs56183820) BETA = −0.10, P = 8.64E−6 and rs11739623 (r2 = 0.96 with rs72797327) BETA = −0.23, P = 1.74E−29, respectively). Our data do not support a role for IL-5 levels and eosinophil count in intima-media thickness, however SNPs associated with IL-5 and eosinophils might influence stability of the atherosclerotic plaque via modulation of RAD50 levels

    Genome-Wide Meta-analysis identifies three novel loci associated with stroke

    Get PDF
    We conducted a European‐only and transancestral genome‐wide association meta‐analysis in 72,147 stroke patients and 823,869 controls using data from UK Biobank (UKB) and the MEGASTROKE consortium. We identified an exonic polymorphism in NOS3 (rs1799983, p.Glu298Asp; p = 2.2E‐8, odds ratio [OR] = 1.05, 95% confidence interval [CI] = 1.04–1.07) and variants in an intron of COL4A1 (rs9521634; p = 3.8E‐8, OR = 1.04, 95% CI = 1.03–1.06) and near DYRK1A (rs720470; p = 6.1E‐9, OR = 1.05, 95% CI = 1.03–1.07) at genome‐wide significance for stroke. Effect sizes of known stroke loci were highly correlated between UKB and MEGASTROKE. Using Mendelian randomization, we further show that genetic variation in the nitric oxide synthase–nitric oxide pathway in part affects stroke risk via variation in blood pressure

    The use of primary care big data for COVID-19 research: A consensus statement from the COVID-19 Primary Care Database Consortium

    Full text link
    The use of big data containing millions of primary care medical records provides an opportunity for rapid research to help inform patient care and policy decisions during the first and subsequent waves of the COVID-19 pandemic. Routinely collected UK primary care data have previously been used for national pandemic surveillance, quantifying associations between exposures and outcomes, identifying high-risk populations and examining the effects of interventions at scale. However, there is no consensus on how to effectively conduct or report these data for COVID-19 research. A COVID-19 primary care database consortium was established in April 2020. Collectively, its researchers have ongoing COVID-19 projects in overlapping datasets with millions of primary care records representing 30% of the UK population, that are variously linked to public health, secondary care and vital status records. This consensus agreement is aimed at facilitating transparency and rigour in methodological approaches, as well as consistency in defining and reporting cases, exposures, confounders, stratification variables and outcomes in relation to the pharmacoepidemiology of COVID-19. This will facilitate comparison, validation and pooling of research during and after the pandemic.https://deepblue.lib.umich.edu/bitstream/2027.42/154864/1/Consensus statement.pdfDescription of Consensus statement.pdf : Main Articl

    Genome-Wide Association Study of Peripheral Artery Disease

    Get PDF
    Background: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. Methods: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. Results: We identified 5 genome-wide significant (P-associationPeer reviewe

    Forty-Three Loci Associated with Plasma Lipoprotein Size, Concentration, and Cholesterol Content in Genome-Wide Analysis

    Get PDF
    While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women's Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P<5×10−8) in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C (10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism—including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles—all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay
    corecore